Acta Crystallographica Section C
Crystal Structure Communications
ISSN 0108-2701

($3 R^{*}, 3^{\prime} R^{*}$)-1, 1^{\prime}-Dimethyl-3,3'-biindo-line-2,2'-dithione

Ute Baumeister, ${ }^{\text {a* }}$ Helmut Hartung, ${ }^{\text {a }}$ Roland Spitzner, ${ }^{\text {b }}$ Michael Felicetti ${ }^{\text {b }}$ and Werner Schroth ${ }^{\text {b }}$

${ }^{\text {a }}$ Institut für Physikalische Chemie, Martin-Luther-Universität Halle-Wittenberg, D-06099 Halle (Saale), Germany, and ${ }^{\mathbf{b}}$ Institut für Organische Chemie, Martin-Luther-Universität Halle-Wittenberg, D-06099 Halle (Saale), Germany Correspondence e-mail: baumeister@chemie.uni-halle.de

Received 5 January 2000
Accepted 17 March 2000
The $\left(3 R^{*}, 3^{\prime} R^{*}\right)$ configuration of the title compound, $\mathrm{C}_{18} \mathrm{H}_{16}{ }^{-}$ $\mathrm{N}_{2} \mathrm{~S}_{2}$, (I), has been unambiguously elucidated by X-ray analysis. Molecules of (I) have C_{2} symmetry to a good approximation and a strongly folded shape. The interplanar angle between the two halves of a molecule is $67.11(6)^{\circ}$.

Comment

1,1'-Dimethyl-3,3'-biindoline-2,2'-dithione, (I), a central intermediate in our synthetic work (Schroth et al., 1994, 2000), was obtained by oxidative dimerization of an indolinethione, (II), using iodine in methanolic solution (Hino et al., 1969). The product is, in principle, able to exist in two diastereomeric forms differing in the chirality at the 3- and 3^{\prime}-positions. Apart from the $\left(3 R^{*}, 3^{\prime} R^{*}\right)$ configuration, as formulated for (I), the $\left(3 R^{*}, 3^{\prime} S^{*}\right)$ counterpart must also be

considered \{the prefix $\left(3 R^{*}, 3^{\prime} R^{*}\right)$ corresponds to DL, and $\left(3 R^{*}, 3^{\prime} S^{*}\right)\left[\left(3 R, 3^{\prime} S\right) \equiv\left(3 S, 3^{\prime} R\right)\right]$ to meso in the older IUPAC recommendations\}. According to NMR spectroscopic characterization and thin-layer chromatography findings, the product is homogeneous. Furthermore, its regeneration from the dithiolate, (III), by acidification provides evidence that the ($3 R^{*}, 3^{\prime} R^{*}$) configuration is thermodynamically favoured with respect to the steric alternative $\left(3 R^{*}, 3^{\prime} S^{*}\right)$ (Schroth et al., 2000). An exact assignment, however, was lacking until now.

A comparison with $1,1^{\prime}$-dimethyl-3,3'-bipyrrolidine-2,2'-dithione, (IV), is useful. This compound arose from the corresponding thiopyrrolidone, (V), via deprotonation and treatment with iodine (Tamaru et al., 1978). Here, the assignment of the $\left(3 R^{*}, 3^{\prime} R^{*}\right)$ configuration was based on chemical transformations and the assumption that a Copetype rearrangement of the disulfide formed as the major product, (VI), should proceed through a chair-like arrangement.

In order to classify unequivocally the configuration of compound (I), an X-ray analysis has been performed. Its result confirms the presence of the (racemic) $\left(3 R^{*}, 3^{\prime} R^{*}\right)$ diastereomer.

The molecular structure of (I) and the atomic numbering used are shown in Fig. 1. The molecule has a strongly folded shape and exhibits C_{2} symmetry to a good approximation; the (non-crystallographic) twofold axis is a perpendicular bisector of the $\mathrm{C} 2-\mathrm{C} 11$ bond. With respect to the bond lengths, the only significant deviation from the C_{2} symmetry is shown by $\mathrm{C} 4-\mathrm{C} 5$ and $\mathrm{C} 13-\mathrm{C} 14$, which differ by 0.023 (4) \AA. The two indoline ring systems are planar to a good approximation, the r.m.s. deviations of the fitted endocyclic atoms being 0.013 ($\mathrm{N} 1 / \mathrm{C} 1-\mathrm{C} 8$) and $0.021 \AA$ ($\mathrm{N} 2 / \mathrm{C} 10-\mathrm{C} 17$), respectively. The maximum deviations of the S and methyl-C atoms from the corresponding least squares planes are not greater than $0.1 \AA$. The dihedral angle subtended by the two planes is 67.11 (6) ${ }^{\circ}$ and the antiperiplanar conformation is illustrated by the torsion angle $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 11-\mathrm{C} 10=174.8$ (2) ${ }^{\circ}$.

Most of the bond lengths and angles in (I) agree well with expected values but some details are worthy of discussion. The N atoms in (I) are $s p^{2}$ hybridized (the bond angles sum to 360.0° at N1 and 359.9° at N2). Due to their different environment, the non-equivalent endocyclic $\mathrm{N}-\mathrm{C}$ bonds have significantly unequal lengths. The standard values for an $\mathrm{N} s p^{2}-\mathrm{Csp} p^{2}$ single or double bond are given as 1.40 and $1.29 \AA$, respectively, in the literature (Rademacher, 1987). Compared with these values, $\mathrm{N} 1-\mathrm{C} 4[1.424$ (3) \AA] and $\mathrm{N} 2-$ C13 [1.413 (3) Å] are slightly longer than a normal single bond, and $\mathrm{N} 1-\mathrm{C} 1[1.335$ (3) \AA] and $\mathrm{N} 2-\mathrm{C} 10$ [1.339 (4) Å] are near the mean value of a single and a double bond. On

Figure 1
The molecular structure and atomic numbering of (I). Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as spheres of arbitrary radii.
checking the 1998 version of the Cambridge Structural Database (Allen \& Kennard, 1993), it appeared that no crystal structure containing a bis(thioxindole) moiety is known. Of the corresponding bis(oxindoles), the racemic (Suyama et al., 1994) and meso (Kato et al., 1985) forms of $1,1^{\prime}, 3,3^{\prime}$-tetramethylleucoisoindigo are the most suitable for structural comparison. In their crystal structures the $\mathrm{N}-\mathrm{C}$ bond lengths discussed above also differ, but less remarkably, by about $0.04 \AA$. The $\mathrm{C} 2-\mathrm{C} 11$ bond linking the molecular halves has a normal length of 1.537 (2) \AA in (I), whereas in the bis(oxindoles) it is markedly lengthened (1.581 and $1.575 \AA$, respectively).

Experimental

Compound (I) was synthesized according to the literature method of Hino et al. (1969), recrystallized from benzene and vacuum dried to give colourless prisms [thin-layer chromatography with benzene $/ n$ hexane (2:1): $R_{f}=0.15$; m.p. 455 K$]$.

Crystal data

```
C18}\mp@subsup{\textrm{H}}{16}{}\mp@subsup{\textrm{N}}{2}{}\mp@subsup{\textrm{S}}{2}{
Mr=324.45
Monoclinic, C2/c
\(a=17.635\) (5) A
\(b=8.418\) (2) A
\(c=22.591\) (5) \(\AA\)
\(\beta=100.50(3)^{\circ}\)
\(V=3297.5(14) \AA^{3}\)
\(Z=8\)
```

$D_{x}=1.307 \mathrm{Mg} \mathrm{m}^{-3}$
Mo K α radiation
Cell parameters from 80
reflections
$\theta=7.6-13.9^{\circ}$
$\mu=0.320 \mathrm{~mm}^{-1}$
$T=293(2) \mathrm{K}$
Prism, yellow
$0.49 \times 0.21 \times 0.15 \mathrm{~mm}$

Data collection
Stoe Stadi-4 four-circle diffractometer
Scan width $(\omega)=1.05-1.20$, scan ratio $2 \theta: \omega=1.00$
5790 measured reflections
2895 independent reflections
1664 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.036$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$
$w R\left(F^{2}\right)=0.106$
$S=0.991$
2895 reflections
241 parameters

$$
\begin{aligned}
& \theta_{\max }=24.97^{\circ} \\
& h=-20 \rightarrow 20 \\
& k=-10 \rightarrow 10 \\
& l=-26 \rightarrow 26 \\
& 3 \text { standard reflections } \\
& \quad \text { frequency: } 60 \text { min } \\
& \quad \text { intensity decay: } 3.4 \%
\end{aligned}
$$

> H atoms treated by a mixture of independent and constrained refinement
> $w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.057 P)^{2}\right]$ where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }=0.023$
> $\Delta \rho_{\max }=0.194 \mathrm{e}^{-3} \AA^{-3}$
> $\Delta \rho_{\min }=-0.269 \mathrm{e}^{-3}$

The quadrants $\pm h,+k,+l$ and $\pm h,-k,-l$ were measured. H atoms were located by a difference Fourier synthesis and refined with isotropic displacement parameters, with the exception of the methylH atom positions, which were idealized by geometrical considerations and allowed to rotate but not tip.

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

S1-C1	$1.649(2)$	$\mathrm{N} 2-\mathrm{C} 13$	$1.413(3)$
$\mathrm{S} 2-\mathrm{C} 10$	$1.650(3)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.522(3)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.335(3)$	$\mathrm{C} 2-\mathrm{C} 11$	$1.537(3)$
$\mathrm{N} 1-\mathrm{C} 4$	$1.424(3)$	$\mathrm{C} 10-\mathrm{C} 11$	$1.515(3)$
$\mathrm{N} 2-\mathrm{C} 10$	$1.339(4)$		
			$107.6(2)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$107.7(2)$	$\mathrm{N} 2-\mathrm{C} 10-\mathrm{C} 11$	$126.3(2)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{S} 1$	$126.02(18)$	$\mathrm{N} 2-\mathrm{C} 10-\mathrm{S} 2$	$110.7(2)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 11$	$112.03(19)$	$\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 2$	
			$-67.0(3)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 11-\mathrm{C} 12$	$49.3(3)$	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 11-\mathrm{C} 10$	$174.8(2)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 11-\mathrm{C} 12$	$-68.9(3)$	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 11-\mathrm{C} 10$	

Data collection: DIF4 (Stoe \& Cie, 1991); cell refinement: DIF4; data reduction: REDU4 (Stoe \& Cie, 1991); program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP/PC (Siemens, 1990); software used to prepare material for publication: SHELXL97.

The authors thank the Fonds der Chemischen Industrie for support of this work.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: JZ1394). Services for accessing these data are described at the back of the journal.

References

Allen, F. H. \& Kennard, O. (1993). Chem. Des. Autom. News, 8, 31-37.
Hino, T., Tsuneoka, K., Nakagawa, M. \& Akaboshi, S. (1969). Chem. Pharm. Bull. 17, 550-585.
Kato, T., Inada, A., Morita, Y. \& Miyamae, H. (1985). Chem. Pharm. Bull. 33, 5270-5277.
Rademacher, P. (1987). Strukturen Organischer Moleküle, p. 56. Weinheim: VCH Verlagsgesellschaft.
Schroth, W., Felicetti, M., Hintzsche, E., Spitzner, R. \& Pink, M. (1994). Tetrahedron Lett. 35, 1977-1980.
Schroth, W., Spitzner, R., Felicetti, M., Bruhn, C. \& Wagner, C. (2000). Eur. J. Org. Chem. Submitted.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Siemens (1990). XP/PC. Version 4.2 for MS-DOS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Stoe \& Cie (1991). DIF4 and REDU4. Stoe \& Cie, Darmstadt, Germany.
Suyama, T., Kato, T., Morita, Y. \& Miyamae, H. (1994). Heterocycles, 37, 10691074.

Tamaru, Y., Harada, T. \& Yoshida, Z. (1978). J. Am. Chem. Soc. 100, 19231925.

